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Primary instabilities in Faraday waves under an arbitrarily periodic excitation
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Under a vertically arbitrarily periodic excitation, the primary Faraday instability of the flat surface of a
viscous fluid layer has been analyzed by the linear stability theory. As an application, the pattern instabilities
induced by the two-frequency forcing have been calculated numerically according to the known experiments.
The theoretical marginal instability curves as well as the bicriticality threshold curves are in good agreement
with those measured in recent experimef&L063-651X98)09403-3

PACS numbs(s): 47.20.Dr, 47.20.Gv, 47.3%i, 47.54+r

I. INTRODUCTION make possible the prediction of the marginal instability curve
(MIC) separating the patterns and flat surface and the bicriti-
The experimental observation of standing waves on theality threshold curvéBTC) separating the onset patterns of
surface of a fluid layer subject to a vertical vibration datesthe harmonic and subharmonic responses under any periodic
back to Faraday1]. When the forcing amplitude exceeds a €xcitation. As applications we will analyze and explain the
critical value, the plane surface undergoes a primary instaBTCs[5] and MICs[6] in Faraday experiments under two-
bility to a standing-wave patterfil—6] or a solitary wave frequency excitations.
[7,8]. A second instability to the transverse wave amplitude
modulation[9] or a state of spatiotemporal chg@10] will Il. LINEAR INSTABILITY UNDER AN ARBITRARILY
arise at a larger forcing amplitude. Depending on the param- PERIODIC EXCITATION
eters of the fluid and the excitation, spatially periodic pat- ) ) ) )
terns in the forms of lines, squares, and hexagons have been We consider a plate with a fluid layer of heightand
observed in large-aspect-ratio containgts6]. Usually the ~ Velocityu(x,y,z,t)={u,v,w}(x,y,z1t). The vertical axis iz
vertical excitation is in the form of the single-frequency sinu-and the free surface is initially flat, stationary, and coincident
soidal wave[1-4,7,9 as Faraday used. On the theoreticalWith the z=0 plane by choice of a coordinate system. The
front, Benjamin and Ursell's investigation of the linear sta-Plate located orz=—h is excited vertically by an arbitrary
bility [11] analyzed the Faraday waves in an ideal fluid layettime function with the period 2/ w,
excited sinusoidally and showed that the fluid dynamic equa- N
tions could be reduced to a system of Mathieu equations )
which allowed the harmonic as well as the subharmonic re- a(t)=§l a; cogjwt+¢;), @)
sponse. Kumar and Tuckerman presented a matrix method
for analyzing Faraday instabilities of a shallow Iay_er of Vis-\where w/27 is the fundamental frequencya; and ¢;
cous fluids[12,13. In th|§ approach, one can easily deter—(jzl, ... N) are acceleration amplitudes and phases of
mine the parameter region for both harmonic and subhars,mnonents, andl is an arbitrary integer. The excitation is

monic responses by an approximate truncation of the ordgfq,ivalent to a temporally modulated gravitational accelera-
of the matrix in infinite order. Although this method is quite

successfule.g., a predictioi12] that there would be a har- tion

monic onset pattern rather than a subharmonic one usually if N

the wavelength became comparable to the height of the layer g(t)= E gjeiiwt, )

has been confirmed by a recent experimdr]), it is only j=-N

suitable for the primary Faraday instability under a single-

frequency excitation. However, Mar [5] has observed pat- where

terns in both harmonic and subharmonic responses with re-

spect to the fundamental frequency under excitation of two 1 i o .

commensurable frequencies. Furthermore, a systematic ex- 90~ 9 9=~ 2&€",  9-j=G; (=1...N),

periment on patterns induced by the two-frequency excita- ©)

tion has also been carried out by Edwards and Fd6ye

They observed patterns in the forms of lines and hexagongith g being gravity acceleration and the asterisk standing

and a 12-fold quasipattern that has long-range order but nfor a complex conjugate. As soon as the instability sets in,

spatial periodicity. In this paper we will extend Kumar’s ap- the free surface becomes- (x,y,t). For an incompressible

proach to the case under an arbitrarily periodic excitation anfluid with uniform densityp and kinetic viscosityy, we can
reduce the linearized hydrodynamic equations for the pertur-
bation fieldsu(x,y,z,t) and&(x,y,t) into a linear instability

*Electronic address: wzchen@nju.edu.cn problem[12]
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[9;— v(9,,— k?) (3, K?)W=0, (4) Wwheres+iaw is a Floquet factor witrs and o being real
numbers. If the real part of the Floquet facsds positive the
(9,4 kHW|,—o=0, (5) system will evaluate to a primary instability. Otherwise, the

free surface will remain flat and stationary. Thecan take

values in the regiof0,3], wherea=0 and3 correspond to

the harmonic and subharmonic responses with respect to the
fundamental frequency/27, respectively. The reality con-
ditions forw(z,t) and &(t) imply that

W|Z=fh:0= (6)

IW|z= =0, ()

9= vdy+3vk?)|,— =—( t+gk2)k2 : 8
(d—v vk?)|;-0 a(t) p 3 (®) W_(2)=W} ,(2), £_,=& ., (for @=0), (12)

TE=W|,—0, 9

where real functionsv=w(z,t) and £=£(t) are defined as
w(x,y,2)=w(z)sinkx+ky) and £&(xy,t)=¢£(t)sinkx  The general solution of E¢4) can be written as a linear
+kyy) andk, andk, satisfyk?=kZ+kZ with the horizontal ~combination ofek",e™" e%" e~%" with a complex wave
wave numbek, respectively. Herg(t) is in the form of an  number
arbitrary multiple-frequency function of timeinstead of the
single-frequency ongl2,13. The solutions to Eq94)—(9) q \/k2+ st+i(a+now
n .

Won(2)=Wp(2), £n,=6& (for a=3). (13

can be assumed to be of Floquet form because the time- v (14
modulation gravitational acceleratigrft) in Eq. (2) is still a
periodic function of timet with period 2m/w, Substituting Eqs(10) and (11) into Egs. (4)—(9), we can
n=oo obtain a set of linear homogenous equationg pf
g(t):e(s+iaw)t 2 gneinwt, (10) N
n=—o
Ii;N(anLJ\/M)gn:O (n=0,+1,+2,...), (15
n=oo =n—
,t — a(stiaw)t inwt, 11
w(z=eTet 3 wy(z)e a e

b,+c,sin h)sinh(kh) +d,coshq,h)coshkh
Mn,|:5n,| g+zk2+ v[ n2 . nsinh(g,h)sinh(kh) n Han ) ikh)] (16)
p k“sinh(g,h)cosh kh) —kq,coshg,h)sinh(kh)
|
1 . ai=ar; (j=1,...N). 22
Noy== 501801, 17 j=ar (I ) (22
b= 4q.k?(q2+k?), (18  We sets=0 and compute the MICs of the harmonic re-
2 sponse a=a"(k) (a=0) and the subharmonic one
Cn=k(ap+60nk"+ k"), (19 aS=aS(k) (a=1) satisfying Eq.(21) for other known pa-
_ 4 2.2 4 rameters. The filled circles in Fig. 1 show an example of the
On= = Gn(dy 205k +5K). (20 MIC of a glycerine-water mixture under the excitation of a
The solvable condition of Eq15) is square wave with fundamental frequency GB/Riz, where
Niun=10,N=7, and other parameters are the same as Ref.
def M+AN)=0. (2)  [12]. In the tonguelike zones in Fig. 1, the solutions of the

linear instability problem(4)—(9) are unstable, i.e.s>0.
Usually for given geometrical and physical parameters of therhe minimum value ofa corresponds to the critical accel-
fluid layer as well as those of the excitation, a numeric caleration amplitudea,. When a<a, the system will keep
culation of Eq.(21) can show whether the system is unstablefrom the instability and remain flat and stationary. For our
(s>0) or stable §<0). Furthermore, it can distinguish the examplea,=aS=104.6 m/2 and the onset of instability is in
primary instabilities between the harmonie<0) and sub-  {he subharmonic response with respect to the fundamental
harmonic @=3) responses as>0. It is necessary in the frequency. In order to compare with those under a single-
computation that the matrix with the infinite order is trun- frequency forcing Fig. Icrossesalso shows the tonguelike
cated at the order df,,,,, according to a given precision. For MICs induced by a sinusoidal wave with a same amplitude.
the MIC, however, the scheme developed by Kumar andVe can see in Fig. 1 that the square wave can induce the
Tuckerman[13] is more convenient than that used in theinstability more effectively than the equal amplitude sinu-
usual instability analysis. Let soidal wave. The period bicriticality, of course, will arise
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FIG. 1. Primary Faraday instability regions under excitations of

a square wavéfilled circles and a sinusoidal wavérosses H FIG. 2. Bicriticality threshold curves separating the harmonic
and S denote the instabilities of harmonic and subharmonic re-from the subharmonic region. The solid line is experimental bicriti-
sponses with respect to the fundamental frequent3sr, respec-  cality threshold curvg5]. The dotted and dashed lines denote the
tively. The lowest acceleration amplitude is located at the first subtheoretical results with the surface tensioms 2.06<10°2 N/m
harmonic response tongue under the square wave forcing. Thand 1.2X10™2 N/m, respectively. The other parameters are950
parameters are p=1220 kg/m{, »=1.02x10* m?s, kg/m®, v=2.0x10"° m¥s, h=2.3x10"° m, andw/27=27.9 Hz.
0=6.76x10"2 N/m, h=2.0x10* m, andw/27=60 Hz.

In Mdller's experiment, the harmonic response with the
when two minima of acceleration amplituda® anda!! be-  fundamentalw/27 is just the subharmonic response of the
come equal to each other for some suitable parameters. second component of the excitation, namely/2m, be-

cause two components are commensurable with a factor 2.
Il. COMPARISON WITH EXPERIMENTS Hence the harmonic response patterns can arise on the sur-
) face more easily than the subharmonic patterns can. Edwards
As mentioned above, Mier [5] has experimentally ob- and Fauvd6], however, have investigated patterns under the

served square and triangular patterns on the surface of a fluigkcitations of two incommensurable frequencies
layer under the two-frequency excitation

a(t)=a[coq y)codmwt)+sin( y)cognwt+ ¢)],
a(t)=a[rcoqwt)+(1—-r)cog2wt+ ¢)]. (23 (26)

He showed some significant marginal curves including thevith m andn being two incommensurable integers. The pat-
BTC separating the harmonic and subharmonic region in théerns and quasipatterns were observed for several sets of
planer-¢. Takingr;=r, r,=1-r, ¢;=0, and¢,=¢ and  {m,n}. In particular, for{4,5 they completed a systematic

settings=0, we can obtain the BTC theoretically, investigation and measured the MICs 6= 75° in the polar
plane of parameters and y (see the solid lines in Fig. 12 of
r=r(¢), (24 Ref.[6]). Although Eq.(26) is no longer a periodic function

with period 27/mw (m<n assumey it is still a periodic
function of time with a fundamental periodnZw. Accord-
all(r,¢)=al(r,¢). (25)  ing to the experimental conditions we d¢t,,,=10, N=5,
s=0, and forcing parameters
The dotted line in Fig. 2 shows the theoretical BTC of Eq.

satisfying

(24). Comparing with the experimental ofsolid curve [5], ri=rp=r3z=0, ry=cogy), rs=sinx),
although the theoretical BTC is about 21% higher than the
experimental one, the result still agrees with the experiments D1= 2= 3= =0, Ps=75° 27

qualitatively. The former, of course, can be reduced by vary-

ing the physical parameters, such as by decreasing the si@nd all physical and geometrical parameters are the same as
face tensionr and/or the kinetic viscosity. The dashed line thOSE in Ref[6]. For every value of the minima ofag' and

in Fig. 2, which fitted the expenmental curve quite well, is aaZ can be picked out from the solutions of Eg1) for «=0
result of decreasing to 1.1x 10~ 2 N/m only. On the other and 3, respectively. The numerical results have been plotted
hand, we have to point out that the parameters we used atwy filled circles and diamonds in Fig. 3, where the former
only the marked values at the temperature 25 °C instead aforrespond to the harmonic response and the latter to the
the real ones at 23 °C at which the experimental BTC wasubharmonic. Although there is no any adjustable parameter
measured. Therefore, we believe that the theory can explain the computation, the result still agrees well with the ex-
well the experimental BTC if all real values of parametersperiments quantitatively. It is easy to see in Fig. 3 that this
are known. stability region is enclosed with two MICs and that there is a
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and subharmonic responses takes place. Therefore, the cal-
culation can explain well the corresponding observations.

IV. CONCLUSION

The linear instability analysis developed by Kunjag]
has been extended to the Faraday pattern experiments under
an arbitrarily periodic excitation. Using this extended linear
instability analysis, one can easily analyze the primary insta-
bilities for various Faraday experiments, such as those under
the excitations of a square wave, a triangle wave, and any
multiple-frequency wave. As an interesting application we

have analyzed the primary Faraday instabilities under the
excitations of two frequencies. Comparing with the known
experiments, the theoretical results show clearly both the
BTC, which separates the harmonic and subharmonic re-
sponse$5], and the MIC which separates the primary pattern
and the flat surfacg6] in the plane of exciting parameters.
Although the matrix in Eq(21) has to be truncated approxi-
mately in a detailed calculation, a good convergence of the
theory allows one to neglect the difference due to the trun-
, cation for anNy,,, slightly larger than the frequency trunca-
tion N. Furthermore, the critical instability under an arbi-
trarily periodic excitation with any preassigned accuracy can
be determined by increasing the truncation number. The
multiple-frequency Faraday experiment has been understood
as an opportunity to investigate the interaction between two

plane ofa andy. The filled circles and filled diamonds separate themOdeS of the patterf6]. The extended theory here can de-

stability region from the harmonic and subharmonic instabilty re-t€fMine the central regiofor poin in which the interaction
gions, respectively. The intersection of two curves is a bicriticality 21S€s. Furthermore, the extended theory can also investigate

the multiple criticality at which there will be a quasipattern
with the competition among the multiple perio@gave num-
berg in the multiple-frequency Faraday experiment. There-
fore, it is important to further understand the mechanism of
period bicriticality pointB at the intersection of two MICs at the pattern formation in the Faraday experiment. We are now
which Edwards and Fauve found a different phenomenon: i the process of an experiment together with a systematic
12-fold quasipattern. The experimental measurement discoomputation for the observation of the multiple criticality.
ered that the wave number of patterns will be about 8.8°cm The extended theory, of course, can be also further general-
for y>xg (x at pointB) and about 7.4 cmt for x< xg. ized to the interface system of two fluifis3,15.

Obviously, for largex> xg, the excitation is mainly from
the frequency componentdd27 and the patterns will re-
spond with its subharmonigw/27r, which is a subharmonic The authors would like to thank Professor Benren Wang
of the fundamentalw/27. Otherwise, the patterns will re- and Professor Guoging Miao of Nanjing University for their
spond with the subharmonic of#27, namely, 5 w/27, helpful discussions. This work was supported by the Scaling
which is a harmonic of the fundamental2s. It is obvious  Plan of the People’s Republic of China and the Natural Sci-
that the bicriticality point of the wave number is just that of ence Foundation of Zhejiang Province, People’s Republic of
the wave period at which the competition between harmonic€hina.
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FIG. 3. Marginal instability curves fokp=75° in the polar

point. All parameters are the same as those in R&f. namely,
p=1220 kg/m, v»=1.0x10* m¥s, 0=6.5x102 N/m,
h=2.9x10"3 m, andw/27=14.6 Hz.
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