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Primary instabilities in Faraday waves under an arbitrarily periodic excitation

Chen Weizhong* and Wei Rongjue
Institute of Acoustics and State Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093, People’s Republic of

~Received 15 July 1997!

Under a vertically arbitrarily periodic excitation, the primary Faraday instability of the flat surface of a
viscous fluid layer has been analyzed by the linear stability theory. As an application, the pattern instabilities
induced by the two-frequency forcing have been calculated numerically according to the known experiments.
The theoretical marginal instability curves as well as the bicriticality threshold curves are in good agreement
with those measured in recent experiments.@S1063-651X~98!09403-3#

PACS number~s!: 47.20.Dr, 47.20.Gv, 47.35.1i, 47.54.1r
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I. INTRODUCTION

The experimental observation of standing waves on
surface of a fluid layer subject to a vertical vibration da
back to Faraday@1#. When the forcing amplitude exceeds
critical value, the plane surface undergoes a primary in
bility to a standing-wave pattern@1–6# or a solitary wave
@7,8#. A second instability to the transverse wave amplitu
modulation@9# or a state of spatiotemporal chaos@9,10# will
arise at a larger forcing amplitude. Depending on the par
eters of the fluid and the excitation, spatially periodic p
terns in the forms of lines, squares, and hexagons have
observed in large-aspect-ratio containers@1–6#. Usually the
vertical excitation is in the form of the single-frequency sin
soidal wave@1–4,7,8# as Faraday used. On the theoretic
front, Benjamin and Ursell’s investigation of the linear st
bility @11# analyzed the Faraday waves in an ideal fluid la
excited sinusoidally and showed that the fluid dynamic eq
tions could be reduced to a system of Mathieu equati
which allowed the harmonic as well as the subharmonic
sponse. Kumar and Tuckerman presented a matrix me
for analyzing Faraday instabilities of a shallow layer of v
cous fluids@12,13#. In this approach, one can easily dete
mine the parameter region for both harmonic and subh
monic responses by an approximate truncation of the o
of the matrix in infinite order. Although this method is qui
successful~e.g., a prediction@12# that there would be a har
monic onset pattern rather than a subharmonic one usua
the wavelength became comparable to the height of the l
has been confirmed by a recent experiment@14#!, it is only
suitable for the primary Faraday instability under a sing
frequency excitation. However, Mu¨ller @5# has observed pat
terns in both harmonic and subharmonic responses with
spect to the fundamental frequency under excitation of
commensurable frequencies. Furthermore, a systematic
periment on patterns induced by the two-frequency exc
tion has also been carried out by Edwards and Fauve@6#.
They observed patterns in the forms of lines and hexag
and a 12-fold quasipattern that has long-range order bu
spatial periodicity. In this paper we will extend Kumar’s a
proach to the case under an arbitrarily periodic excitation
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make possible the prediction of the marginal instability cur
~MIC! separating the patterns and flat surface and the bic
cality threshold curve~BTC! separating the onset patterns
the harmonic and subharmonic responses under any per
excitation. As applications we will analyze and explain t
BTCs @5# and MICs@6# in Faraday experiments under two
frequency excitations.

II. LINEAR INSTABILITY UNDER AN ARBITRARILY
PERIODIC EXCITATION

We consider a plate with a fluid layer of heighth and
velocity u(x,y,z,t)[$u,v,w%(x,y,z,t). The vertical axis isz
and the free surface is initially flat, stationary, and coincid
with the z50 plane by choice of a coordinate system. T
plate located onz52h is excited vertically by an arbitrary
time function with the period 2p/v,

a~ t !5(
j 51

N

aj cos~ j vt1f j !, ~1!

where v/2p is the fundamental frequency,aj and f j
( j 51, . . . ,N) are acceleration amplitudes and phases
components, andN is an arbitrary integer. The excitation i
equivalent to a temporally modulated gravitational accele
tion

g~ t !5 (
j 52N

N

gje
i j vt, ~2!

where

g05g, gj52
1

2
aje

if j , g2 j5gj* ~ j 51, . . . ,N!,

~3!

with g being gravity acceleration and the asterisk stand
for a complex conjugate. As soon as the instability sets
the free surface becomesz5j(x,y,t). For an incompressible
fluid with uniform densityr and kinetic viscosityn, we can
reduce the linearized hydrodynamic equations for the per
bation fieldsu(x,y,z,t) andj(x,y,t) into a linear instability
problem@12#
4350 © 1998 The American Physical Society
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@] t2n~]zz2k2!#~]zz2k2!w50, ~4!

~]zz1k2!wuz5050, ~5!

wuz52h50, ~6!

]zwuz52h50, ~7!

~] t2n]zz13nk2!uz5052S g~ t !1
s

r
k2D k2j, ~8!

] tj5wuz50 , ~9!

where real functionsw5w(z,t) and j5j(t) are defined as
w(x,y,z)5w(z)sin(kxx1kyy) and j(x,y,t)5j(t)sin(kxx
1kyy) andkx andky satisfyk25kx

21ky
2 with the horizontal

wave numberk, respectively. Hereg(t) is in the form of an
arbitrary multiple-frequency function of timet instead of the
single-frequency one@12,13#. The solutions to Eqs.~4!–~9!
can be assumed to be of Floquet form because the t
modulation gravitational accelerationg(t) in Eq. ~2! is still a
periodic function of timet with period 2p/v,

j~ t !5e~s1 iav!t (
n52`

n5`

jneinvt, ~10!

w~z,t !5e~s1 iav!t (
n52`

n5`

wn~z!einvt, ~11!
th
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wheres1 iav is a Floquet factor withs and a being real
numbers. If the real part of the Floquet factors is positive the
system will evaluate to a primary instability. Otherwise, t
free surface will remain flat and stationary. Thea can take

values in the region@0,1
2 #, wherea50 and 1

2 correspond to
the harmonic and subharmonic responses with respect to
fundamental frequencyv/2p, respectively. The reality con
ditions for w(z,t) andj(t) imply that

w2n~z!5wn21* ~z!, j2n5jn21* ~ for a50!, ~12!

w2n~z!5wn* ~z!, j2n5jn* ~ for a5 1
2 !. ~13!

The general solution of Eq.~4! can be written as a linea
combination ofekh,e2kh,eqnh,e2qnh with a complex wave
number

qn5Ak21
s1 i ~a1n!v

n
. ~14!

Substituting Eqs.~10! and ~11! into Eqs. ~4!–~9!, we can
obtain a set of linear homogenous equations ofjn ,

(
l 5n2N

l 5n1N

~Mn,l1Nn,l !jn50 ~n50,61,62, . . .!, ~15!

where
Mn,l5dn,lS g1
s

r
k21

n@bn1cnsinh~qnh!sinh~kh!1dncosh~qnh!cosh~kh!#

k2sinh~qnh!cosh~kh!2kqncosh~qnh!sinh~kh!
D , ~16!
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Nn,l52
1

2
an2 le

ifn2 l, ~17!

bn54qnk2~qn
21k2!, ~18!

cn5k~qn
416qn

2k21k4!, ~19!

dn52qn~qn
412qn

2k215k4!. ~20!

The solvable condition of Eq.~15! is

det~M1N!50. ~21!

Usually for given geometrical and physical parameters of
fluid layer as well as those of the excitation, a numeric c
culation of Eq.~21! can show whether the system is unsta
(s.0) or stable (s,0). Furthermore, it can distinguish th
primary instabilities between the harmonic (a50) and sub-

harmonic (a5 1
2 ) responses ass.0. It is necessary in the

computation that the matrix with the infinite order is tru
cated at the order ofNtrun according to a given precision. Fo
the MIC, however, the scheme developed by Kumar a
Tuckerman@13# is more convenient than that used in t
usual instability analysis. Let
e
l-

d

aj5ar j ~ j 51, . . . ,N!. ~22!

We set s50 and compute the MICs of the harmonic r
sponse aH5aH(k) (a50) and the subharmonic on

aS5aS(k) (a5 1
2 ) satisfying Eq.~21! for other known pa-

rameters. The filled circles in Fig. 1 show an example of
MIC of a glycerine-water mixture under the excitation of
square wave with fundamental frequency 60/2p Hz, where
Ntrun510, N57, and other parameters are the same as R
@12#. In the tonguelike zones in Fig. 1, the solutions of t
linear instability problem~4!–~9! are unstable, i.e.,s.0.
The minimum value ofa corresponds to the critical acce
eration amplitudeac . When a,ac the system will keep
from the instability and remain flat and stationary. For o
exampleac5ac

S5104.6 m/s2 and the onset of instability is in
the subharmonic response with respect to the fundame
frequency. In order to compare with those under a sing
frequency forcing Fig. 1~crosses! also shows the tonguelike
MICs induced by a sinusoidal wave with a same amplitu
We can see in Fig. 1 that the square wave can induce
instability more effectively than the equal amplitude sin
soidal wave. The period bicriticality, of course, will aris
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when two minima of acceleration amplitudesac
S andac

H be-
come equal to each other for some suitable parameters.

III. COMPARISON WITH EXPERIMENTS

As mentioned above, Mu¨ller @5# has experimentally ob-
served square and triangular patterns on the surface of a fl
layer under the two-frequency excitation

a~ t !5a@rcos~vt !1~12r !cos~2vt1f!#. ~23!

He showed some significant marginal curves including t
BTC separating the harmonic and subharmonic region in
planer -f. Taking r 15r , r 2512r , f150, andf25f and
settings50, we can obtain the BTC theoretically,

r 5r ~f!, ~24!

satisfying

ac
H~r ,f!5ac

S~r ,f!. ~25!

The dotted line in Fig. 2 shows the theoretical BTC of E
~24!. Comparing with the experimental one~solid curve! @5#,
although the theoretical BTC is about 21% higher than t
experimental one, the result still agrees with the experime
qualitatively. The former, of course, can be reduced by var
ing the physical parameters, such as by decreasing the
face tensions and/or the kinetic viscosityn. The dashed line
in Fig. 2, which fitted the experimental curve quite well, is
result of decreasings to 1.131022 N/m only. On the other
hand, we have to point out that the parameters we used
only the marked values at the temperature 25 °C instead
the real ones at 23 °C at which the experimental BTC w
measured. Therefore, we believe that the theory can exp
well the experimental BTC if all real values of paramete
are known.

FIG. 1. Primary Faraday instability regions under excitations
a square wave~filled circles! and a sinusoidal wave~crosses!. H
and S denote the instabilities of harmonic and subharmonic r
sponses with respect to the fundamental frequencyv/2p, respec-
tively. The lowest acceleration amplitude is located at the first su
harmonic response tongue under the square wave forcing.
parameters are r51220 kg/m3, n51.0231024 m2/s,
s56.7631022 N/m, h52.031023 m, andv/2p560 Hz.
id
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In Müller’s experiment, the harmonic response with th
fundamentalv/2p is just the subharmonic response of the
second component of the excitation, namely, 2v/2p, be-
cause two components are commensurable with a factor
Hence the harmonic response patterns can arise on the s
face more easily than the subharmonic patterns can. Edwa
and Fauve@6#, however, have investigated patterns under th
excitations of two incommensurable frequencies

a~ t !5a@cos~x!cos~mvt !1sin~x!cos~nvt1f!#,
~26!

with m andn being two incommensurable integers. The pa
terns and quasipatterns were observed for several sets
$m,n%. In particular, for$4,5% they completed a systematic
investigation and measured the MICs forf575° in the polar
plane of parametersa andx ~see the solid lines in Fig. 12 of
Ref. @6#!. Although Eq.~26! is no longer a periodic function
with period 2p/mv (m,n assumed!, it is still a periodic
function of time with a fundamental period 2p/v. Accord-
ing to the experimental conditions we setNtrun510, N55,
s50, and forcing parameters

r 15r 25r 350, r 45cos~x!, r 55sin~x!,

f15f25f35f450, f5575° ~27!

and all physical and geometrical parameters are the same
those in Ref.@6#. For every value ofx the minima ofac

H and
ac

S can be picked out from the solutions of Eq.~21! for a50
and 1

2, respectively. The numerical results have been plotte
by filled circles and diamonds in Fig. 3, where the forme
correspond to the harmonic response and the latter to t
subharmonic. Although there is no any adjustable parame
in the computation, the result still agrees well with the ex
periments quantitatively. It is easy to see in Fig. 3 that th
stability region is enclosed with two MICs and that there is

f

-

-
he

FIG. 2. Bicriticality threshold curves separating the harmoni
from the subharmonic region. The solid line is experimental bicrit
cality threshold curve@5#. The dotted and dashed lines denote th
theoretical results with the surface tensionss52.0631022 N/m
and 1.131022 N/m, respectively. The other parameters arer5950
kg/m3, n52.031025 m2/s, h52.331023 m, andv/2p527.9 Hz.
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period bicriticality pointB at the intersection of two MICs at
which Edwards and Fauve found a different phenomenon
12-fold quasipattern. The experimental measurement disc
ered that the wave number of patterns will be about 8.8 cm21

for x.xB (x at point B! and about 7.4 cm21 for x,xB .
Obviously, for largex.xB , the excitation is mainly from
the frequency component 5v/2p and the patterns will re-
spond with its subharmonic52 v/2p, which is a subharmonic
of the fundamentalv/2p. Otherwise, the patterns will re-
spond with the subharmonic of 4v/2p, namely, 4

2 v/2p,
which is a harmonic of the fundamentalv/2p. It is obvious
that the bicriticality point of the wave number is just that o
the wave period at which the competition between harmon

FIG. 3. Marginal instability curves forf575° in the polar
plane ofa andx. The filled circles and filled diamonds separate th
stability region from the harmonic and subharmonic instabilty re
gions, respectively. The intersection of two curves is a bicriticali
point. All parameters are the same as those in Ref.@6#, namely,
r51220 kg/m3, n51.031024 m2/s, s56.531022 N/m,
h52.931023 m, andv/2p514.6 Hz.
a
v-

ic

and subharmonic responses takes place. Therefore, the
culation can explain well the corresponding observations

IV. CONCLUSION

The linear instability analysis developed by Kumar@12#
has been extended to the Faraday pattern experiments u
an arbitrarily periodic excitation. Using this extended line
instability analysis, one can easily analyze the primary ins
bilities for various Faraday experiments, such as those un
the excitations of a square wave, a triangle wave, and
multiple-frequency wave. As an interesting application w
have analyzed the primary Faraday instabilities under
excitations of two frequencies. Comparing with the know
experiments, the theoretical results show clearly both
BTC, which separates the harmonic and subharmonic
sponses@5#, and the MIC which separates the primary patte
and the flat surface@6# in the plane of exciting parameters
Although the matrix in Eq.~21! has to be truncated approx
mately in a detailed calculation, a good convergence of
theory allows one to neglect the difference due to the tr
cation for anNtrun slightly larger than the frequency trunca
tion N. Furthermore, the critical instability under an arb
trarily periodic excitation with any preassigned accuracy c
be determined by increasing the truncation number. T
multiple-frequency Faraday experiment has been unders
as an opportunity to investigate the interaction between
modes of the pattern@6#. The extended theory here can d
termine the central region~or point! in which the interaction
arises. Furthermore, the extended theory can also invest
the multiple criticality at which there will be a quasipatte
with the competition among the multiple periods~wave num-
bers! in the multiple-frequency Faraday experiment. The
fore, it is important to further understand the mechanism
the pattern formation in the Faraday experiment. We are n
in the process of an experiment together with a system
computation for the observation of the multiple criticalit
The extended theory, of course, can be also further gene
ized to the interface system of two fluids@13,15#.
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